General Certificate of Education
January 2009
Advanced Level Examination

MATHEMATICS

MFP2

Unit Further Pure 2

Monday 19 January 20091.30 pm to 3.00 pm

For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables. You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MFP2.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.

Information

- The maximum mark for this paper is 75 .
- The marks for questions are shown in brackets.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

Answer all questions.

1 (a) Use the definitions $\sinh \theta=\frac{1}{2}\left(\mathrm{e}^{\theta}-\mathrm{e}^{-\theta}\right)$ and $\cosh \theta=\frac{1}{2}\left(\mathrm{e}^{\theta}+\mathrm{e}^{-\theta}\right)$ to show that

$$
1+2 \sinh ^{2} \theta=\cosh 2 \theta
$$

(b) Solve the equation

$$
3 \cosh 2 \theta=2 \sinh \theta+11
$$

giving each of your answers in the form $\ln p$.

2 (a) Indicate on an Argand diagram the region for which $|z-4 i| \leqslant 2$.
(b) The complex number z satisfies $|z-4 i| \leqslant 2$. Find the range of possible values of $\arg z$.

3 (a) Given that $\mathrm{f}(r)=\frac{1}{4} r^{2}(r+1)^{2}$, show that

$$
\begin{equation*}
\mathrm{f}(r)-\mathrm{f}(r-1)=r^{3} \tag{3marks}
\end{equation*}
$$

(b) Use the method of differences to show that

$$
\sum_{r=n}^{2 n} r^{3}=\frac{3}{4} n^{2}(n+1)(5 n+1)
$$

4 It is given that α, β and γ satisfy the equations

$$
\begin{aligned}
& \alpha+\beta+\gamma=1 \\
& \alpha^{2}+\beta^{2}+\gamma^{2}=-5 \\
& \alpha^{3}+\beta^{3}+\gamma^{3}=-23
\end{aligned}
$$

(a) Show that $\alpha \beta+\beta \gamma+\gamma \alpha=3$.
(b) Use the identity

$$
(\alpha+\beta+\gamma)\left(\alpha^{2}+\beta^{2}+\gamma^{2}-\alpha \beta-\beta \gamma-\gamma \alpha\right)=\alpha^{3}+\beta^{3}+\gamma^{3}-3 \alpha \beta \gamma
$$

to find the value of $\alpha \beta \gamma$.
(c) Write down a cubic equation, with integer coefficients, whose roots are α, β and γ.
(d) Explain why this cubic equation has two non-real roots.
(e) Given that α is real, find the values of α, β and γ.

5 (a) Given that $u=\cosh ^{2} x$, show that $\frac{\mathrm{d} u}{\mathrm{~d} x}=\sinh 2 x$.
(b) Hence show that

$$
\int_{0}^{1} \frac{\sinh 2 x}{1+\cosh ^{4} x} \mathrm{~d} x=\tan ^{-1}\left(\cosh ^{2} 1\right)-\frac{\pi}{4}
$$

6 Prove by induction that

$$
\frac{2 \times 1}{2 \times 3}+\frac{2^{2} \times 2}{3 \times 4}+\frac{2^{3} \times 3}{4 \times 5}+\ldots+\frac{2^{n} \times n}{(n+1)(n+2)}=\frac{2^{n+1}}{n+2}-1
$$

for all integers $n \geqslant 1$.

7 (a) Show that

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\cosh ^{-1} \frac{1}{x}\right)=\frac{-1}{x \sqrt{1-x^{2}}} \tag{3marks}
\end{equation*}
$$

(b) A curve has equation

$$
y=\sqrt{1-x^{2}}-\cosh ^{-1} \frac{1}{x} \quad(0<x<1)
$$

Show that:
(i) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\sqrt{1-x^{2}}}{x}$;
(ii) the length of the arc of the curve from the point where $x=\frac{1}{4}$ to the point where $x=\frac{3}{4}$ is $\ln 3$.
(5 marks)

8 (a) Show that

$$
\left(z^{4}-\mathrm{e}^{\mathrm{i} \theta}\right)\left(z^{4}-\mathrm{e}^{-\mathrm{i} \theta}\right)=z^{8}-2 z^{4} \cos \theta+1
$$

(b) Hence solve the equation

$$
z^{8}-z^{4}+1=0
$$

giving your answers in the form $\mathrm{e}^{\mathrm{i} \phi}$, where $-\pi<\phi \leqslant \pi$.
(c) Indicate the roots on an Argand diagram.

END OF QUESTIONS

